선형 회귀 모델을 위한 데이터 변환
선형 회귀의 데이터 인코딩은 일반적으로 레이블이 아니라 원-핫 인코딩을 적용합니다.
실습
데이터 전처리(정규화, 로그변환)을 해주는 함수 정의
from sklearn.preprocessing import StandardScaler, MinMaxScaler, PolynomialFeatures
# method는 표준 정규 분포 변환(Standard), 최대값/최소값 정규화(MinMax), 로그변환(Log) 결정
# p_degree는 다향식 특성을 추가할 때 적용. p_degree는 2이상 부여하지 않음.
def get_scaled_data(method='None', p_degree=None, input_data=None):
if method == 'Standard':
scaled_data = StandardScaler().fit_transform(input_data)
elif method == 'MinMax':
scaled_data = MinMaxScaler().fit_transform(input_data)
elif method == 'Log':
scaled_data = np.log1p(input_data)
else:
scaled_data = input_data
if p_degree != None:
scaled_data = PolynomialFeatures(degree=p_degree,
include_bias=False).fit_transform(scaled_data)
return scaled_data
# Ridge의 alpha값을 다르게 적용하고 다양한 데이터 변환방법에 따른 RMSE 추출.
alphas = [0.1, 1, 10, 100]
#변환 방법은 모두 6개, 원본 그대로, 표준정규분포, 표준정규분포+다항식 특성
# 최대/최소 정규화, 최대/최소 정규화+다항식 특성, 로그변환
scale_methods=[(None, None), ('Standard', None), ('Standard', 2),
('MinMax', None), ('MinMax', 2), ('Log', None)]
for scale_method in scale_methods:
X_data_scaled = get_scaled_data(method=scale_method[0], p_degree=scale_method[1],
input_data=X_data)
print(X_data_scaled.shape, X_data.shape)
print('\\n## 변환 유형:{0}, Polynomial Degree:{1}'.format(scale_method[0], scale_method[1]))
get_linear_reg_eval('Ridge', params=alphas, X_data_n=X_data_scaled,
y_target_n=y_target, verbose=False, return_coeff=False)
(506, 13) (506, 13)
## 변환 유형:None, Polynomial Degree:None
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.788
alpha 1일 때 5 폴드 세트의 평균 RMSE: 5.653
alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.518
alpha 100일 때 5 폴드 세트의 평균 RMSE: 5.330
(506, 13) (506, 13)
## 변환 유형:Standard, Polynomial Degree:None
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.826
alpha 1일 때 5 폴드 세트의 평균 RMSE: 5.803
alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.637
alpha 100일 때 5 폴드 세트의 평균 RMSE: 5.421
(506, 104) (506, 13)
## 변환 유형:Standard, Polynomial Degree:2
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 8.827
alpha 1일 때 5 폴드 세트의 평균 RMSE: 6.871
alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.485
alpha 100일 때 5 폴드 세트의 평균 RMSE: 4.634
(506, 13) (506, 13)
## 변환 유형:MinMax, Polynomial Degree:None
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.764
alpha 1일 때 5 폴드 세트의 평균 RMSE: 5.465
alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.754
alpha 100일 때 5 폴드 세트의 평균 RMSE: 7.635
(506, 104) (506, 13)
## 변환 유형:MinMax, Polynomial Degree:2
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 5.298
alpha 1일 때 5 폴드 세트의 평균 RMSE: 4.323
alpha 10일 때 5 폴드 세트의 평균 RMSE: 5.185
alpha 100일 때 5 폴드 세트의 평균 RMSE: 6.538
(506, 13) (506, 13)
## 변환 유형:Log, Polynomial Degree:None
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 4.770
alpha 1일 때 5 폴드 세트의 평균 RMSE: 4.676
alpha 10일 때 5 폴드 세트의 평균 RMSE: 4.836
alpha 100일 때 5 폴드 세트의 평균 RMSE: 6.241
'빅데이터 분석가 양성과정 > Python - 머신러닝' 카테고리의 다른 글
회귀(Regression) - 실습) 자전거 대여 수요 예측 (0) | 2024.07.12 |
---|---|
회귀(Regression) - 로지스틱 회귀 / 회귀 트리 (0) | 2024.07.12 |
회귀(Regression) - 규제 선형 회귀 (0) | 2024.07.12 |
회귀(Regression) - 다항 선형 회귀 (0) | 2024.07.12 |
회귀(Regression) - 예제 (0) | 2024.07.12 |